
Bold-line diagrammatic Monte Carlo method: General formulation and application to expansion
around the noncrossing approximation

Emanuel Gull,1 David R. Reichman,2 and Andrew J. Millis1

1Department of Physics, Columbia University, New York, New York 10027, USA
2Department of Chemistry, Columbia University, New York, New York 10027, USA

�Received 5 April 2010; revised manuscript received 12 July 2010; published 6 August 2010�

We present a general framework for performing “bold-line” diagrammatic Monte Carlo calculations using an
analytical partial resummation as a starting point for a stochastic summation of all diagrams. As a stringent test
case we assess the accuracy of the method by solving the equations of single-site dynamical mean-field theory,
using the noncrossing approximation as a starting point. We establish the validity of the starting approxima-
tions and show that the bold method provides a very accurate treatment of the Mott-insulating phase.
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I. INTRODUCTION

Observables in quantum field theories may be expressed
as infinite sums of Feynman diagrams. During the last de-
cade it has been realized that stochastic methods may be used
to estimate the entire diagrammatic series.1,2 This requires a
diagram-generating procedure which is ergodic �all diagrams
contributing to the series must be generated� and which is
such that each diagram is generated with a probability pro-
portional to its weight in the series to be studied. These prob-
lems have been solved2–6 and stochastic diagrammatic meth-
ods currently provide the best estimates for properties of the
moderately correlated regime of the two-dimensional Hub-
bard model as well as successful impurity solvers for dy-
namical mean-field7 and nonequilibrium6,8 problems.

Analytical studies over many years have established that
while direct evaluation of low-order terms in a perturbation
theory is rarely reliable, partial resummations of infinite se-
ries of diagrams often capture much of the relevant physics.
Partial resummation replaces bare propagators �typically de-
noted by light lines in diagrams� with renormalized propaga-
tors �typically denoted by heavy or bold-face lines�; thus, the
diagrams involving further corrections to a partial resumma-
tion are often referred to as bold-line diagrams. Given these
successes, it is natural to ask if stochastic techniques can be
used to estimate the further corrections to an infinite partial
resummation or, in other words, to develop a bold-line nu-
merics. References 9 and 10 present one such method, a
Monte Carlo computation based on the expansion of the self-
energy of the polaron problem �single particle coupled to an
oscillator bath� about the ladder resummation; however, a
bold-line method for a truly many-body problem has hereto-
fore not existed.

In this paper we present a method for the stochastic evalu-
ation of a many-body fermionic bold-line perturbation
theory. Our method is applicable to any diagrammatic series
expansion. We observe that in bare diagrammatic expan-
sions, different possible contractions for fermion operators
typically sum up to determinants, substantially reducing the
number of diagrams to be evaluated and ameliorating any
minus sign problem. In bold expansions the determinant
structure is lost and the important question is whether the
loss is offset by the physics gained from the partial resum-

mation. As a nontrivial example we apply the method to the
one-impurity Anderson model, for which analytical resum-
mation techniques are well established and are believed to
capture much of the physics, and a substantial body of nu-
merical work exists for comparison. The analytical resumma-
tion techniques are the noncrossing approximation11,12

�“NCA”� and one crossing approximation13 �“OCA”� where
the names refer to specific topological features of the dia-
grammatics which we discuss in more detail below. We for-
mulate the bold-line expansion about these analytical resum-
mations, delineate the regimes in which it is useful, and use
the techniques to resolve a long-standing question concern-
ing the form of the electronic spectral function near the edge
of the Mott gap. As a by-product we determine the range of
applicability of the NCA and OCA approximations for spin
degeneracy N=2.

The rest of this paper is organized as follows. In Sec. II
we outline the general features of our bold-line method. In
Sec. III we present the specific formulas needed for the ap-
plication of the method to the single-impurity Anderson
model. In Sec. IV we present metrics demonstrating the suc-
cesses and limitations of the method, and in Sec. V we show
results for the electron Green’s function, demonstrating in
particular that the greatly improved accuracy of the method
allows a definitive statement about the structure of the spec-
tral function at the edge of the Mott-Hubbard gap. Section VI
is a summary and discussion of future prospects.

II. METHODS

Bold-line expansions of many-body problems require a
modification of the diagrammatic Monte Carlo technique
�these modifications were not necessary in the single-particle
problem studied in Refs. 9 and 10�. Conventional diagram-
matic Monte Carlo is typically formulated in the configura-
tion space consisting of all diagrams contributing to the par-
tition function. We refer to this space as partition function
space and denote it by CZ. In a conventional expansion the
space CZ suffices because Green’s-function diagrams are
generated by breaking a propagator line in partition function
diagrams. However, in a bold-line expansion the configura-
tion space must be extended because there exist Green’s-
function diagrams which are not obtained by breaking lines
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in a bold expansion of the partition function. We therefore
employ a “Worm” algorithm.2,14 Our calculation is formu-
lated in an extended configuration space CW consisting of the
union of partition function �CZ� and the Green’s function
�CG� space: CW=CZ�CG, with a weight w�x� of a given
configuration x given by wZ if x�CZ and wG if x�CG. In
this extended space we define a partition function

W = Z + �� G , �1�

where � denotes a sum over all the elements of the G matrix
and the parameter � is in principle arbitrary, but in practice
should be chosen so that the Z and G parts of W give com-
parable contributions; the calculations presented here use �
=0.15.

A measurement of a component ab of G, �Gab�W, in the
extended space CW is proportional to the physical Green’s
function but is wrongly normalized. The correct normaliza-
tion is obtained after division by the partition function, also
measured in the space CW, i.e., by ��Z�W=�xzx with zx=1 if
x�CZ and zx=0 otherwise. Thus,

�Gab� =
�Gab�W

��Z�W
. �2�

The sum over all terms in CW is performed using a dia-
grammatic Monte Carlo method: diagrams in CW are gener-
ated, accepted, or rejected stochastically by inserting and re-
moving local operators and hybridization lines according to
their contribution to ZW and integrated stochastically, in anal-
ogy to Ref. 4. This summation is exact if all bold diagrams
are included.

While diagram-generating procedures are model depen-
dent, they generically consist of the insertion or removal of
operators and reconnection of parts of diagrams. The pro-
posed insertion �removal� of operator tuples �typically pairs�
raises �lowers� the diagram order, changing a configuration x
to y and is accepted with probability

Wxy
acc = min�1,Rxy� , �3�

Rxy =
w�y�Wyx

prop

w�x�Wxy
prop = Ryx

−1, �4�

where Wxy
prop denotes the proposal probability of an update.

Transitions between configurations in CG and CZ are per-
formed by inserting or removing the Green’s-function opera-
tors or propagator lines into �from� a partition function con-
figuration. Typical diagram-generating procedures can
produce terms which are already included in the bold resum-
mation; one must test each generated diagram to make sure
that it is not already included, but the computational cost of
the test is typically negligible.

III. APPLICATION: SINGLE-IMPURITY
ANDERSON MODEL

As a stringent test of the bold-line resummation methods
we consider one of the best-studied nontrivial models in

condensed-matter physics, namely, the single-impurity
Anderson model. This model represents the physics of a
magnetic impurity in a metal and is also important as an
auxiliary problem in the “dynamical mean-field” approxima-
tion to the properties of models of correlated electron
materials.7 For this model, widely used partial resummation
methods are available. In addition, numerically exact results
obtained by the continuous-time hybridization expansion
�CT-HYB� quantum Monte Carlo method4 are available for
comparison.

The Anderson model describes a correlated site coupled to
a bath of free electrons; the Hamiltonian is

H = Hbath + Hmix + Hloc, �5�

with

Hbath = �
p�

�pap�
† ap�, Hmix = �

p�

�Vpap�c�
† + H.c.� ,

Hloc = �
�

− �n� + Un↑n↓,

where ap� label a continuum of “bath” operators with disper-
sion �p, and c� are local operators at energy � with interac-
tions U, hybridizing with the bath with strength Vp. In the
original formulation of the Anderson model, the parameters
�d and U are properties of the magnetic impurity and �p and
Vp are properties of the host metal. In the dynamical mean-
field context the impurity model is an auxiliary problem used
to provide information about a lattice model of interacting
electrons. In this case U is the on-site interaction of the lat-
tice model and �d, �p, and Vp are fixed by a self-consistency
condition, as discussed in Ref. 7. These details are not im-
portant for the formulation and application of the bold-line
expansion. However, our specific results are obtained using
parameters arising from the dynamical mean-field solution of
the one-orbital Hubbard model at various particle densities
and interaction strengths.

We study the model as an expansion in V about the atomic
limit in which the local states are decoupled from the bath.
Alternatively, a resummation of interaction diagrams around
the free limit could be designed; we do not consider this
here. The expansions may be represented pictorially by time-
ordered diagrams such as those shown in Fig. 1. The propa-
gation in atomic states is represented by different lines �wavy
and dashed�: in the eigenbasis �0� , �↑ � , �↓ � , �↑↓� of Hloc the
energies are Eloc=0 ,−� ,−� ,U−2�, respectively, and the
corresponding �bare� propagators are e−�Eloc. The hybridiza-
tion vertices are indicated by solid and open circles while the
propagation of electrons in the bath is denoted by solid lines
which represent the hybridization function

	��� = �
p

Vp
�Vp

e−�p
 + 1
� 	− e�p��−
�, � � 0

e�p�, �  0.

 �6�

Accurate and efficient numerical methods exist for evaluat-
ing the direct hybridization expansion.4

The resummation methods we consider are the NCA
�Refs. 11 and 12� and the OCA.13 The NCA resums all seg-
ments containing no crossing fermion lines �e.g., Fig. 1�a��
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into a renormalization of the propagator of the atomic state
�e.g., Fig. 1�b��, which becomes G�j�= ��G�j�

0 �−1−��j��−1 with
��j� given by the self-consistent equations

��0���� = G�↑����	↑��� + G�↓����	↓��� , �7�

������� = G�0����	��− �� + G�↑↓����	−���� , �8�

��↑↓���� = G�↑����	↓�− �� + G�↓����	↑��� . �9�

First-order OCA self-energies are given by equations involv-
ing additional crossing hybridization lines, and the full OCA
equations are obtained by resumming vertex equations. Note
that the projection techniques used in analytical NCA
calculations15,16 are not needed here. Multiorbital17 and clus-
ter models can be studied using the same operations with 	,
G, and � in matrix form.

The hybridization expansion of the partition function is

Z = �
k
� � � d�1 ¯ d�k� �

j1,. . .,jk

j1�,. . .,jk�

det 	

�Trc�e−
HlocT�cjk
��k�cjk�

† ��k�� ¯ cj1
��1�cj1�

† ��1��� . �10�

The hybridization expansion algorithm4,17 �CT-HYB� enables
a direct numerical sampling of this series. To sample a bold-
line expansion around the NCA we restrict to diagrams that
contain no noncrossing parts �i.e., we use the CT-HYB
method to generate diagrams but do not sample those �such
as in Fig. 1�c�� that have a part contained in NCA, and we
replace the atomic propagators G�j�

0 by NCA propagators
G�j�

NCA�. In order to sample around the first-order OCA, we
limit ourselves to diagrams without one-crossing subseg-
ments �thereby reducing Fig. 1�c� to Fig. 1�b��. Testing if a
diagram needs to be sampled is a �cheap� O�k� operation: in
BoldNCA diagrams with hybridization lines ap

†ap that span
no other local operators need not be sampled. In BoldOCA,
additionally, diagrams of the type ap

†aqapaq
† are excluded.

The CT-HYB diagram-generating procedure is ergodic
�generates all diagrams�; while we do not have a formal
proof that it remains ergodic when restricted to bold dia-

grams we have been unable to find a counterexample and
have extensive numerical evidence that all bold diagrams are
generated.

An independent discussion with no implementation of a
different formulation of a bold expansion about the NCA
limit was given in Ref. 18. The extended configuration space
CW was not employed. The bold expansion as defined here
was not implemented but an evaluation of all diagrams up to
5th order, with time integrals evaluated by a Monte Carlo
method, was reported.

IV. RESULTS: METRICS

In this section we present some basic results which illus-
trate the strengths and weaknesses of the bold expansion.
Our results were obtained using the Anderson model corre-
sponding to the dynamical mean-field approximation to the
single-orbital Hubbard model on a Bethe lattice.7,19 This
model is specified by an interaction strength U, a hopping
parameter t, and a carrier concentration n. At carrier concen-
tration n=1 the dynamical mean-field approximation to this
model has a metal-insulator transition at a critical interaction
strength U5t �at the temperatures we study�7 and we shall
see that the bold expansion behaves very differently in the
insulating and metallic phases.

An important metric is the weight p�k� of terms at order k
in the expansion for Z. This is shown in Fig. 2 for different
interaction strengths U at inverse temperature 
=10 / t. The
curves are characterized by a non-negligible weight at zero
expansion order and a tail which decays approximately ex-
ponentially at high perturbation order. If the NCA �or first-
order OCA� exactly solved the model, p�k=0� would equal
1, and the tail would be absent.

A clear difference between the curves is seen. For U�5
p�k=0� is very close to unity and the weight in the tail is
very small, while for U�5t p�k=0� becomes smaller and the
contribution of the non-NCA and -OCA diagrams becomes
important. These differences arise from a difference in phys-

a) c)

b) d)

FIG. 1. �Color online� Typical diagrams arising in the hybrid-
ization expansion of the partition function of the Anderson impurity
model: the four local states are described by wavy lines ��0� , �↑↓��
and light red �dark blue� dashed lines ��↑ � , �↓ ��. Light red �dark
blue� solid lines denote hybridization functions, and empty �filled�
circles denote local annihilation �creation� operators. �a� NCA dia-
gram. �b� Bold propagator �double dashed line� which resums NCA
diagrams including �a�. �c� Diagram with crossing lines. �d� Dia-
gram in expansion which resums diagrams including c. In Bold-
OCA, all of diagram �c� is contained in the single bold line �b�.

0 2 4 6 8
Expansion Order k

0.0001

0.01

1

p(
k)

U = 1
U = 4
U = 5
U = 7
U = 12

FIG. 2. �Color online� Probability p for a diagram of Z to con-
tain k spin-up hybridization lines, computed for Anderson impurity
model with semicircular density of states and hybridization function
fixed by dynamical mean-field self-consistency condition with pa-
rameters �=0.15, n=1, and 
t=10 at U values indicated. Full sym-
bols: BoldNCA. Empty symbols: BoldOCA.
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ics. At this temperature the model is in a gapped insulating
phase for U�4.5t and is in a gapless metallic phase for U
�4.5t. Clearly the NCA and first-order OCA are very good
approximations to the insulating phase and poor approxima-
tions to the metallic phase. A bold expansion around the free
�U=0� limit �not considered here� presumably behaves dif-
ferently: while the weakly correlated metal would be cap-
tured accurately the local physics of the Mott insulator would
be difficult to reach.

We have also studied these histograms of p�k� as a func-
tion of temperature �not shown�. The temperature depen-
dence is negligible in the insulating phase. In the metallic
phase, as the temperature is decreased, the value p�k=0� de-
creases and the weight in the tail increases; as T→0 p�k
=0�→0 reflecting the failure of NCA and OCA to ad-
equately describe the physics in the T→0 limit of the metal-
lic phase. Note that the weight of diagrams as a function of
expansion order as expressed by the long tail in Fig. 3 only
decays very slowly and that basing the algorithm on a more
sophisticated resummation �here, first-order OCA instead of
NCA� does not change the decay of the tail.

Another important metric for an expansion of an interact-
ing fermion problem is the average sign. Figure 3 shows that
the bold expansion suffers from a sign problem. The upper
panel demonstrates that in the insulating regime �U�4.5, at
this T�, the expansion around BoldNCA shows convergence
at very low order and configurations with negative sign

�which occur at higher expansion order� give a negligible
contribution. Thus, in this case the loss of the determinant
structure is compensated by the much better starting solution.
However, in the metallic case the starting solution is less
good and a severe sign problem arises. The steep drop
around U / t=4 marks the departure from the insulator and the
failure of NCA and OCA. The lower panel shows a similar
behavior of the sign as a function of doping at a strong in-
teraction.

V. RESULTS: ELECTRON GREEN’S FUNCTION

Figures 4 and 5 compare the imaginary-time Green’s
function obtained by BoldNCA �BoldOCA results are indis-
tinguishable on the scale used in Figs. 4 and 5� simulations
to the CT-HYB results and analytical NCA and OCA results.
Comparable computational resources are invested in the bold
and CT-HYB calculations. The large differences between the
NCA and OCA and Monte Carlo curves in the upper panel of
Fig. 4 show that for the weakly correlated metallic phase the
initial starting point is poor and the bold expansion is not
useful in practice. The lower panel shows that in the moder-
ately correlated “bad metal” case the starting point is closer
to the exact answer and the bold and CT-HYB results are

5
U/t
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1
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FIG. 3. �Color online� Upper panel: expectation �over CW� of
sign as a function of interaction U at carrier concentration n=1 per
site and temperatures indicated. Lower panel: expectation value of
sign as a function of carrier concentration 1−x at U=6t and tem-
peratures indicated.
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NCA
OCA

n = 1
U = t
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CT-HYB
NCA
OCA
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1 2 3
τt

0.08

0.1

0.12

G
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)
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U = 4t

FIG. 4. �Color online� The Green’s function of Anderson impu-
rity model with semicircular density of states and hybridization
function fixed by a DMFT self-consistency condition, calculated
using NCA, OCA, CT-HYB, and BoldNCA �BoldOCA would be
indistinguishable�, 
t=10, starting from converged and accurate
�Ref. 20� CT-HYB results at interactions and dopings indicated.
Upper panel: Fermi-liquid case U / t=1. Lower panel: Correlated
metal U / t=4.
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very close at temperature T= t /10. The rapid decrease of sign
with T �cf. Fig. 3� shows that for U / t=4, 
t15 the bold
method will become significantly less efficient. The upper
panel of Fig. 5 shows that the same situation is obtained in
the strongly correlated lightly doped case. Finally, the lower
panel of Fig. 5 demonstrates the clear superiority of the bold
methods in the insulating case, where the noise in the center
of the imaginary-time interval is very substantially reduced.

In standard CT-HYB simulations, spectra of insulating
systems are hard to obtain because of large �relative� errors
in the midrange of the imaginary-time interval and so the
questions of the precise value of the insulating gap and the
form of the above-gap structure have been discussed exten-
sively in the literature; for recent work and references, see
Refs. 21 and 22. Figure 6 shows spectral functions obtained
by maximum entropy analytical continuation of the bold-
line, CT-HYB, and analytical NCA and OCA approxima-
tions. The relative errors in the basic CT-HYB data lead to a
substantial smearing of the gap edge features. Also shown is
the continuation of high-precision CT-HYB data obtained by
expending 64 times more computer resources. The bold ex-
pansions and the high-precision CT-HYB data essentially
agree on the gap value and the form of the spectral function
near the gap edge. �The differences at higher frequency re-

flect the intrinsic sensitivity of analytical continuation to
very small differences in data.�

Our results firmly establish that the spectral function in
the paramagnetic insulating phase is characterized by a sharp
peak at the gap edge, and we obtain more precise values for
the insulating gap. The accuracy is confirmed by the lower
panel of Fig. 6 which presents the difference 	G between the
measured G��� and G��� backcontinued from A���. The ana-
lytical approximations show clear deviations, in particular a
larger gap. The difference in gap value can be seen directly
as a difference in the imaginary-time data in the lower panel
of Fig. 5: G��� calculated using the two analytical methods
falls below the numerically exact results in the imaginary-
time range 2�t5.

VI. CONCLUSIONS

In conclusion, we have presented a “bold” diagram
method and applied it to an expansion around the noncross-
ing and one crossing approximations to the Anderson impu-
rity model. We have also applied the algorithm to the Kondo
limit of the Anderson model without a self-consistency con-
dition, with results �not shown� very similar to those de-
scribed here. The NCA and OCA approximations are be-
lieved to become exact in the limit of large N,15 but their
accuracy for physically relevant N has been established here.
BoldNCA is general, numerically exact, and easily extensible
to multiple orbitals or cluster calculations, where a severe
sign problem appears also in the hybridization expansion and
the effect of reducing the expansion order will be most pro-
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FIG. 5. �Color online� The Green’s function of Anderson impu-
rity model with semicircular density of states and hybridization
function fixed by a DMFT self-consistency condition, calculated
using NCA, OCA, CT-HYB, and BoldNCA �BoldOCA would be
indistinguishable�, 
t=10, starting from converged and accurate
�Ref. 20� CT-HYB results at interactions and dopings indicated.
Upper panel: Doped Mott insulator at filling n=0.95 and interaction
U / t=6. Lower panel: Mott insulator, U / t=6, n=1.

0 2 4
ω

0

0.1

0.2

0.3

A
(ω

)

CT-HYB
Continued NCA
Continued (full) OCA
BoldNCA
BoldOCA
CT-HYB, x 64

0 2 4 6
τ

0.0005

0.0000

-0.0005

∆G
(τ

)

CT-HYB
BoldNCA
BoldOCA

FIG. 6. �Color online� Upper panel: analytical continuation of
the Green’s functions obtained from different solvers from DMFT
of half-filled Hubbard model at U=6t and 
t=7. Lower panel: dif-
ference 	G��� between G��� obtained from CT-HYB, BoldNCA,
and BoldOCA measurements and G��� reconstructed from the ana-
lytically continued A���.
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nounced. We expect the main region of applicability to be in
this area, as well as to nonequilibrium problems, where the
oscillating phase severely limits the applicability of nonbold
methods.6 Extensions to nonequilibrium and multiorbital cal-
culations and to the resummation of vertices are currently
under way. Diagrammatic resummation based on the random
phase approximation �RPA� is also essential for the study of
screening and polarization; exploration of the methods dis-
cussed here may be fruitful in this context.
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